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The generation and growth of gravity-capillary waves ( A  % 1 cm) by wind are 
reconsidered using linear instability theory to describe the process. For all friction 
velocities we solve the resulting Orr-Sommerfeld equation using asymptotic methods. 
New elements in our theory, compared with the work of Benjamin (1959) and Miles 
(1962), are more stress on mathematical rigour and the incorporation of the 
wind-induced shear current. We find that the growth rate of the initial wavelets, the 
first waves to be generated by the wind, is proportional to u:. 

We also study the effect of changes in the shape of the profiles of wind and 
wind-induced current. In  doing this we compare results of Miles (1962), Larson & 
Wright (1975), Valenzuela (1976), Kawai (1979), Plant & Wright, (1980) and our 
study. We find that the growth rate is very sensitive to the shape of the wind profile 
while the influence of changes in the current profile is much smaller. To determine 
correctly the phase velocity, the value of current and current shear at the interface 
are very important, much more so than the shape of either wind or current profile. 

1. Introduction 
Recently interest in generation, growth and equilibrium of gravity-capillary waves 

has been renewed owing to the growing importance of remote sensing of the sea 
surface. Microwave-radar backscatter is determined largely by the energy density of 
waves with wavelengths of the order of 4-40 cm (Raney et al. 1985). In  order to 
ascertain the energy density one needs knowledge of sources and sinks of energy and 
of kinematical quantities like advection and refraction. 

In  this study only part of this intricate process is considered. We concentrate on 
the initial generation and growth of gravity-capillary waves under the influence of 
the wind. 

Most of the recent studies on this subject use the linear-instability theory as 
presented by Miles (1957). In 1959 Benjamin made an analytical study of the flow 
over a wavy boundary. He looked at the flow over a rigid surface, in this way 
decoupling the flows in the two media. Although he noted the possibility of 
generalizing this theory to the flow over a fluid and determining growth rates, he did 
not carry out such a programme. Miles (1962) did apply Benjamin’s theory to the 
growth of gravity-capillary waves by wind. He used a linear-logarithmic flow in air, 
the profile of which is drawn in figure 1. In accordance with Benjamin he assumed 
the water to be at  rest. It may be noted that these two flows do not satisfy the 
equation for continuity of shearing stress at  the boundary of two fluids. 

Valenzuela ( 1976) numerically solved the equations using a coupled wind-current 
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FIGURE 1.  Wind speed and current as a function of height. In air a linear-logaritimic profile is drawn; 
in water: . . . . . , Miles' constant profile (Miles took U, = 0, in this figure we took U,, = 0.75 m s-l); 
- _ _ _  , Valenzuela's linear-logarithmic profile ; -.-, Kawai's error-function-like profile; -, our 
exponential profile. On the vertical scale typical values for various quantities are indicated. A is 
a wavelength, yla a thickness of the viscous sublayer in air, yc a critical height, 7, a wave amplitude 
and ylw a thickness of the viscous sublayer in water as assumed in Valenzuela's profile. 

system satisfying the continuity equations. For the wind as well as for the current 
he assumed a linear-logarithmic profile. 

Kawai (1979a) extended the research to the generation of gravity-capillary waves 
by combining numerical and experimental work. He measured the flow at the moment 
the initial wavelets appeared and their growth rate, phase velocity and frequency. 
His numerical work describes these measurements. He used a coupled wind-current 
system, an error-function-like current profile (drawn in figure 1 )  and the usual wind 
profile. 

In the next section our analytical analysis is presented. We use the linear- 
logarithmic profile in air and an exponential profile in water (figure 1). We have chosen 
this profile because it closely resembles Kawai's profile and because i t  allows for an 
exact solution of the Rayleigh equation. We briefly discuss the derivation of the 
Orr-Sommerfeld equation plus boundary conditions as a description of the growth 
of gravity-capillary waves. We then solve these equations asymptotically. Asympto- 
tic analysis makes sense because the density of air is small compared to the density 
of water and because reasonably large Reynolds numbers can be defined in air and 
water."We find expressions for the phase velocity and growth rate of the waves. 

It is inherent with the asymptotic methods that we are able to indicate to what 
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order each expression is correct. This is an improvement on the wave-growth theories 
of both Benjamin and Miles. We are even able to indicate the order of the errors in 
Miles’ expression for the growth. Another improvement of our analysis is that the 
main flows satisfy the continuity equations. This means that formal justification for 
our expressions exists, in contrast to the cases of Benjamin and Miles. Numerical 
results of our analysis are given in $3. We also study how sensitive the phase velocity 
and growth rate are to changes in shape of the profiles of wind and current, by 
comparing the results of Miles, Valenzuela, Kawai and our study: each is based on 
a different profile. For verification we use the experimental laboratory results of 
Kawai (1979a), Larson & Wright (1975) and Plant & Wright (1980). 

2. Theory 
2.1. Methods and equations 

The growth of waves on the interface of water and air can be seen as the perturbation 
of the equilibrium consisting of a plane interface and uniform basic flow in air and 
water. Physically, the description would be as follows. The wind sets in and after a 
few seconds the upper layer of the water starts to drift with the wind. These flows, 
both strongly sheared near the interface, are unstable and after another few seconds 
ripples start to appear (see Kawai 1979a). In  this initial stage the growth of the waves 
is exponential; after a further few seconds other mechanisms come into effect and 
saturation sets in. In  a final stage the wind and current profile would be modified 
by the constant flow of energy from the air towards the waves. In this paper we confine 
ourselves to the initial stage of wave growth, where instability and viscous damping 
are the only energy sources. Keeping this in mind a mathematical description of the 
growth of the waves can be given. Growth is then described as an instability of the 
equilibrium in the normal-mode analysis. For simplicity the situation is assumed to 
be uniform in one horizontal direction: as we are interested in plane-parallel flow this 
does not diminish the possibility of finding growth (Drazin & Reid 1982, p. 155). In 
a later section the description of the wind and the wind-induced current must be 
chosen. Here we only assume the basic flows to be shear flows satisfying at the inter- 
face the usual continuity equations of normal and tangential velocity, shearing stress 
and normal pressure (Batchelor 1981, p. 148-150). The equation for the continuity of 
shearing stress will be of importance. It reads: 

where ,u is the viscosity, U is the velocity of the basic flow in the horizontal direction 
and a prime denotes differentation with respect to 6, a dimensionless height 
coordinate equal to the product of wavenumber (see (6)) and height y. The subscripts 
a and w stand for air and water respectively. 

We are interested in the deviation ~ ( z ,  t )  of the interface from equilibrium, where 
2 is the non-trivial horizontal coordinate and t the time. To calculate 7 we introduce 
a perturbation stream function l/r. It is assumed to have a wave-like nature: 

It will be seen from (6) that 7 has the same z- and t-dependence; thus k is the 
wavenumber and c the phase velocity. 

The equations for 9, the height-dependent part of the stream function, can be easily 
derived from the five conservation laws and the equation of state (Batchelor 1981, 
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p. 164) which together govern the fluid motion. Additional assumptions we made are: 
temperature and density are constant ; gravity is the only body force present; and 
turbulence and other nonlinear features are neglected, although they enter indirectly 
through the background profile. Here i t  may be added that surface tension, which 
cannot be neglected for the short waves of interest here, is a conservative force like 
gravity. Thus we know beforehand that these two forces influence the frequency and 
not the growth of the waves. Surface tension is not a body force but enters through 
the boundary conditions. The governing equations then become the Orr-Sommerfeld 
equation plus linearized boundary conditions. These boundary conditions express the 
vanishing of the wave-induced disturbance at  large heights and the continuity 
conditions at the interface. 

In dimensionless form the equations read (see Valenzuela 1976; Kawai 1979a) : 

Here u* is the friction velocity in air (see $2.3), W is a dimensionless velocity, 
W = U - c ,  and W, is the value of W at 6 = 0, the air-water interface. The 
gravitational acceleration is g,  T is the surface tension and p the density. S and E 

are dimensionless constants: 6 = p,/pw and 8 = vk/u, ,  the inverse of a Reynolds 
number. 

Finding the growth of a particular wave is now translated into solving the problem 
outlined above. To completely determine the problem we need boundary conditions 
or initial values in x and t. As we are interested in temporal growth rates we take 
periodic boundary conditions in x and initial values for $ a t  a given time. This implies 
that k is real and that c is solved as a function of k. When one is interested in spatial 
growth, i.e. growth with fetch, the roles of x and t are reversed and initial values for 
given x and boundary conditions in t are taken (Kawai 1979; Drazin & Reid 1982, 
pp. 152-153). The imaginary part of c determines the growth rate, as can be seen from 
the equation for t,he interface (which can be derived from the kinematical boundary 
condition) : 

To find c as a function of k the profiles of wind and current have to be specified ; then 
the problem is completely determined. We next solve the Orr-Sommerfeld equation 
in air and water separately using asymptotic methods (see, for instance, Drazin & 
Reid 1982, chapter 4). The boundary conditions a t  infinity are applied and the 
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solutions are coupled with the aid of the continuity equations. Throughout we will 
use the fact that 8, E,  and E ,  are small parameters: 

8 4  1,  E ,  Q 1 ,  6 ,  Q 1 .  (7% b,  c) 

2.2. Basic flow and perturbation stream function in water 

As mentioned in the introduction the basic flow in the water is taken to be 

We take the water flow to be time independent. This is consistent with the 
experimental results of Kawai (1979); he found the flow to depend on time but on 
a much larger scale than the growth of the waves. 

Substitution of (8) in the Orr-Sommerfeld equation enables us to fmd the 
perturbation stream function dw in water. We write dw as a sum of two independent 
solutions. These will be called the inviscid and viscid solution respectively, diw and 
dVw, as one is in first order a solution of the inviscid Rayleigh equation and the other 
is relatively large in regions where viscosity is important. We normalize the solution 
to unity at the surface: 

d w  = Cdiw + W v w  7 d w ( 0 )  = 1.  ( 9 )  

Normalization of dW is possible because the set of equations (3)-(5) does not depend 
on the amplitude of the perturbation (substitution of = ad yields exactly the same 
equations). For convenience we also normalize the two independent solutions : 

d i w ( 0 )  = d v w ( 0 )  = 1 .  

The inviscid solution can be found by a formal expansion of diW and 6 in ew ( e ,  4 l ! ) .  
To first order this yields: 

d i w  = A w o + i ~ w A w l + O ( G ) ,  

1 1 ( 12)' r =  I+- ,  2 J  
h 

p = l + ( l + $ ) ,  q = - -  1 + -  ' 
h h 

The function JiWl is a complicated expression. Upon inspection we find 

4 i w l ( O )  = &wI(o)  = 0 3  

which is the only result required below. Here K is an integral over the total depth 
of a differential operator working on diw0; the exact form of the operator and an 
explicit expression for K are given in the Appendix (A 1)-(A 3). F is the hypergeometric 
function (see Abramowitz & Stegun 1965). 

The viscid solution varies on a scale of E: (Drazin & Reid 1982). It can be found 
by a WKB approximation : 
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Note that (9)-( 11) give the complete solution of the Orr-Sommerfeld equation 
satisfying the boundary conditions a t  infinite depth. 

2.3. Basic flow and perturbation stream function in air 
We have taken the usual linear-logarithmic wind profile (figure 1) : 

Eu 
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U, = Ul+ U , + i  (a-tanhia), 

u,='+u,, [ < E l ;  
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The value of r determines the thickness of the viscous sublayer. All that is known 
about its value is that it is of the order of unity (Monin & Yaglom 1971). In the 
literature on the growth of gravity-capillary waves values of 5 and 8 prevail (Miles 
1962; Valenzuela 1976; Kawai 1979). We have taken r = 5.  All the essentials of the 
analysis are independent of this choice ; only the values of the growth rates are larger 
for larger r .  

From (8) and (12) it  can be deduced that the condition for continuity of shearing 
stress a t  the interface, i.e. (l), is fulfilled. To solve the Orr-Sommerfeld equation with 
(12) as the basic flow we again separate the solution $, into an inviscid and a viscid 
part : 

A = AAa+B$va, = 1, h ( 0 )  = $va(O) = 1. (13) 

The results 3f Kawai (1979) concerning the phase velocity indicate that i t  is 
reasonable to assume that the critical height Ec (defined by U,(&) = c )  is beneath the 
top of the viscous sublayer : 

This implies that the Rayleigh equation has no singularities. The zeroth-order 
expansion of the inviscid solution (which is the solution of the Rayleigh equation) 
can then be calculated numerically without complications. We used the method 
described by Janssen & Peeck (1985). It will be important in the following to note 
that : 

E, < 5,. (14) 

for n odd I \ O( 1/ca) for 0.007 < B ,  < 0.02, 

\0(1) for 0.06 < B, 
$?a = 

and for n even $?a = O(1). I 
Note the two ranges for the order of magnitude of $& when n is odd. For intermediate 
B,, i.e. 0102 < E, < 0.06, the order of $ra is also intermediate. For u* x 0.15 m s-l the 
minimum value for e, of 0.007 corresponds to wavelengths where capillary effects 
become unimportant. It is the smallest value for E, that we have considered. 

Equation (14) also implies that in the inner viscous layer (a thin layer around the 
critical height; for an exact definition see Drazin & Reid 1982) the profile can be 
approximated by U, = ( f ;u* /~ , )  + U,. I n  the inner viscous layer, which includes the 
interface, the viscid solution varies on a scale of e t .  It is given to order B! by the second 
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integral of the Airy function (Drazin & Reid 1982): 

ii 

% 
5 = T [[+E, WO], phase (i?) = in. 

The function $:a([o) has often been tabulated and plotted (e.g. Benjamin 1959). It 
is related to the Tietjens function DT : 

w I I  (0  II) = -(4$;a(Co))-1* 

2.4. Phase velocity and growth rate 
Application of the remaining boundary conditions ( 4 M )  to the stream functions in 
air and water yields expressions for A, B, C, D and c .  We find 

I O(s3) for 0.007 < s, < 0.02, 

O(1) for 0.06 < sa, 
B = (  

i O(Se?) 

O(Ss;?) for 0.06 < s,, 

for 0.007 < s, < 0.02, 
D =( 
A = l -B,  c= 1-D. I 

The cause of the two distinct ranges in the orders of magnitude of A, B and D is their 
dependence on #;,. In principle, a third range also occurs when 1 /sa- W, = O( 1 /ea). 
However, we have checked that this does not occur for sa 2 0.007. 

To find the phase velocity c we introduce an expansion for it. Many powers and 
cross-terms of the small parameters 8, e, and sw appear in the equations. However, 
we find that it is possible to define 

c = c ,+c ,+c2+ ..., 

J c 
-2 = 0(dw, 4,s). 
C1 

The order estimates depend on the relative magnitude of the small parameters. We 
have indicated several possibilities; the largest of these determines the accuracy of 
the expression. 

The approximations to the phase velocity c, and c, can be expressed aa fol1ows:t 

-isw X + S ( B -  imY ) 
JV 

c, = u* (l9b). 

The terms $iw0, 2, 8, m, Y and JV are given in the Appendix (A 3)-(A 8). .#' re- 
presents the effects of viscosity and shear flow in water; its value is approximately 4. 

We are only interested in gravity-capillary waves and neglect the possibility of finding 
Tollrnien-Schlichting waves, although they are also solutions of the equations (Miles 1962). 
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S and Y are respectively the complex amplitude of normal pressure and shear 
stress of the air on the surface. They have been made dimensionless by dividing by 
-pa kui r] W,. 9’ is dominated by the term -iq, B$ra and F by B, B$ta. m, the 
coefficient of F, depends on properties of the flow in the water, for the case of no 
flow it  equals 1. JV also depends on the water flow and has a value of about 2. 

The growth rate of the energy p is given by 

B = 2k Imc. (20a) 

p = 2k Imc,. (20b) 

As c = c,+c, and c, is real this implies 

Equation (20a) follows immediately from (6) and the definition of energy density for 
surface waves. 

To get some feeling of what (19) implies we first consider the case Ua = U,  = const. 
Then (19) simplifies to  

c, is now the familiar expression for the phase velocity of free waves. X / N  describes 
viscous damping and S / N  the correction to  the phase velocity due to the 
renormalization of the gravity force (see Whitham 1974, p. 445). Here it may also 
be noted that when 6 = 0 growth is impossible, as c, is real. This was found 
numerically by Kawai (1977), who studied the possibility of the instability of a 
sheared current generating waves. 

The effect of the shear in the water is to decrease c, and the damping due to  changes 
in X and JV. The shear in the air together with its viscosity have two effects. One 
is that the pressure is shifted in phase relative to the surface waves, thereby making 
growth possible (Miles 1957 was the first to determine the phase shift of the pressure). 
The other is that  the tangential stress Y is now non-zero. 

Another interesting simplification is that  of a wind profile that is linear up to 
infinity. This is quite realistic for the very short waves (6, + 6,). Moreover, this flow 
allows for an exact solution of the Orr-Sommerfeld equation in terms of the Airy 
function. This was already known to Mises (1912a,b) and Hopf (1914) and perhaps 
the solution is of even earlier date. For the profile 

expression (16) for becomes valid a t  all heights and $ia becomes exactly 

$ia = e-7, r ]  = 6 +ea w,. 
Equation (19) remains the same but the pressure can now be given explicitly : 

Here Do = Uo/u,; $za and $ia can be found in the Appendix, (A 21)-(A 22). 
Both the shear stress and the normal pressure appear in (19b). However, the effect 

of the stress on the growth is much smaller than the effect of the pressure. This can 
be deduced by noting that m = O(1) and comparing the leading terms of S and F: 
- iea B+ta and ea B+ta. Then note that for both $ta andj:, the real and imaginary 
part are of the same order and that 11 $ta 11 is an order ea3 smaller than 11 $ra 1 1 .  
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Miles (1962) also expressed the growth in terms of approximations to the pressure 
and shear stress:t 

(23) 

However, there are two important differences between Miles’ expression and ours. 
Firstly, Miles’ expression is formally invalid since the shearing stress of the basic flows 
is discontinuous at the surface; Miles assumed U,  = 0. In the next section it will be 
seen that the numerical results of (23) are, however, satisfactory (this was also shown 
by Valenzuela 1976). Secondly, Miles approximated the pressure and shearing stress 
on physical rather than mathematical grounds (actually, Benjamin 1959 made these 
approximations and Miles adopted them). Therefore he waa not able to indicate to 
what order his expressions were correct. Using our mathematical analysis we can 
estimate the order of the error in Miles’ expression for the pressure. For the case 
U, = 0, assuming the expressions for the stream functions to be exact (though Miles 
obtained approximations), it is e,. For comparison, based on the assumption of in- 
finite precision of the #’s, our expression for the pressure is correct to order 
Se$ei for 0.007 < 6, < 0.02 and to order Se*ei for 0.06 < E,. 

Another conclusion to be drawn from (19) is that, as growth by wind input and 
viscous damping nearly cancel, the growth rate of the gravity-capillary waves is very 
sensitive to slight changes of the oceanic and atmospheric parameters pa, p,, v, 
and v,. 

cIM = a[ - i g  4 + S(gM - i.TM)] u+. 

3. Discussion of results 
3.1. Growth rates 

To calculate the growth rate numerically we neglect .T. This can be justified by noting 
that the leading term of 9- is of the same order as the error in 9 (as is correct 
to order e i ) .  We use the following numerical values (all in SI): g = 9.806, 
T/p ,  = 7.25 x 

In figure 2 the curves of the growth rate as a function of wavenumber are shown 
for several wind speeds. For u* 3 0.05 m/s all curves show a single positive 
maximum. We find a critical value for wave generation near u* = 0.05 m/s. This 
value is in accordance with Miles (1962) and Kawai (19793). For u* between, roughly, 
0.10 and 0.30 m/s the top of the curve occurs at such wavenumbers that R, ‘v 36. 
Growth at a certain wavenumber swongly increases with windspeed; there is no 
simple scaling law. The growth at the top of the curve increases even faster with 
increasing windspeed; this will be discussed later. 

To compare our results with those of others we have chosen one specific friction 
velocity. The main features are the same for other values of u*, which we have 
checked for u+ < 0.4 m/s. We find the same type of growth curves as Valenzuela 
(1976) and Kawai (1979a), as can be seen in figure 3. This implies that the 
decomposition of the stream function into a viscid and an inviscid part, which we 
have used throughout, is valid at all friction velocities; this point was left in doubt 
by Valenzuela (1976). The height of the top of our curve differs by about 10 yo from 
that of Kawai and Valenzuela, in agreement with our estimated accuracy of ei N 7 %. 
The difference between the curves of Kawai and Valenzuela is 20 Yo. As each curve 
is based on a different current profile these differences determine the sensitivity of 
the growth to small changes in the current profile. Miles (1962) studied smaller 

t Miles studied the generalized situation of finite depth. We have taken the limit of his results 
for infinite depth and written his expression in our notation. 

S = 1.2 x v, = 1.5 x lov5 and v, = 
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FIGURE 3. Growth rate as a function of wavenumber; a comparison between different studies, each 
using a different flow in water: -, Miles (1962) u* = 0.23 m s-l; -.-, Valenzuela (1976) 

, 0.25 m sP; - - - -, Kawai (1979~)  0.248 m s-l; . . . . . , our study 0.248 m 0. Experimental results 
of Larson & Wright (1975) at u* = 0.27 m s-l are indicated with crosses. 
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FIGURE 4. Maximum growth rate as a function of friction velocity. Theory: ., Miles (1962); 0,  
Valenzuela (1976) ; - - - -, Kawai (19794 ; -, our study. Measurements: 0, Larson & Wright 
(1975); 0,  Kawai (1979~) .  

wavenumbers than we have. Therefore not much more can be said than that the 
results of the two studies do not disagree. The measurements of Larson & Wright 
(1975) on B give values which are reproduced by our theory within 25 %.t 

Those waves for which the growth rates are largest are the first to be generated 
by the wind (Kawai 1979). Therefore the maximum growth rates as a function of u* 
are of interest and we have plotted them in figure 4. This plot also offers another 
method of comparing the effects of the various current profiles. 

As a result of our calculations we find, for the range of friction velocities 
0.05 m/s < u* < 0.4 m/s (roughly, this range coincides with 1 m/s < U,, < 12 m/s), 
that 

This is a surprisingly simple result considering the intricate expression (19b). 
In  the range considered we again find that our results are close to those of Miles, 

Valenzuela and Kawai ; deviations are within 20 % . The values of the measurements 

t There is some uncertainty concerning the friction velocity; Larson & Wright give the value 
u,, in the steady state while our computations are for the transient state. According to Kawai 
(19794 u,, in the transient state is considerably less (up to 50 yo) than in the steady state at the 
same value of, for instance, U,. Another uncertainty is introduced by the fact that u* determinations 
in the laboratory are, as a rule, exact up to not more than 5-10%. However, we have neglected 
these complications and simply compared data at the same u,,. 

Anax = u"* (24) 
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FIGURE 5. Growth rate as afunction ofwavenumber at u* = 0.214 m s-l, effect of changes in profiles: 
-, our theory; - - - -, linear wind profile ; -.-, U ,  = 0; . . . . . , (25) as approximation to the 
pressure. 

of Kawai and Larson & Wright are higher than the theoretical values; the largest 
difference is 100 yo of the theoretical maximum growth rate. It must be noted that 
the functional dependence on u, differs in the various theories and experiments; e.g. 
Kawai finds numerically that is independent of 
the current profile within 20 yo but relation (24) is different for the various profiles. 

To study the effect of the shape of the wind profile we have taken T = 8 (see (12)) 
and we have compared the linear-logarithmic profile with the linear profile (21). Note 
that these changes occur above the critical height. We have also studied separately 
the effects of the two features which distinguish Miles' theory from ours. We took 
a Benjamin type of approximation to the pressure - equal to PM to order 8, - together 
with the exponential profile in water; that is, we used (19b) with 9 replaced by 

x u";. Thus, for given u,, 

Also we took U ,  = 0 together with our expression for the pressure. The results for 
one value of u, are shown in figure 5. 

When the current is set uniformly equal to zero the growth rate becomes about 
15 % lower than when the exponential profile is used. This deviation is in accordance 
with the sensitivity to the current profile we found above. When the linear wind profile 
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is used we still obtain growth but the growth rates are incorrect. The results are best 
for high wavenumbers but even then the growth is two times too large. The growth 
curves as a function of wavenumber no longer show a maximum. When the linear- 
logarithmic profile is used with a thicker viscous sublayer, r = 8 instead of r = 5 ,  
growth is nearly, though not quite, t times as much. When (25) is used for the pressure 
the growth corresponds within 20 yo with the values found using our full expression 
for 9; the growth is always too large. 

Our analysis shows that the growth is very sensitive to  changes in the shape of 
the wind profile, even when these changes occur well above the critical height. This 
is not as surprising as i t  may seem. Miles (1957) was able to express the growth rate 
first in terms of an integral of the stream function and the wind profile from the 
interface up to infinity, and then in terms of values of these functions and their 
derivatives a t  the critical height (Miles 1957, p. 192: equations (4.1) and (4.2)). 
However, the stream function and its derivatives a t  the critical height still depend 
on all parts of the wind profile because the stream function is the solution of a 
differential equation containing this profile at all heights. Note that the second step 
of Miles as sketched above is not possible when viscosity is taken into account. 

3.2. Phase velocities 

I n  principle, the phase speed of the growing waves depends in two ways on the wind: 
directly ; but also indirectly through the wind-induced current. First we treat the 
effect of the current. The current can be characterized by its value at the surface U,  
and by the shape of its profile. To study the effect of these two we have varied both. 
First, to investigate the effect of the shape of the current profile we compared our 
results with those of Valenzuela and Kawai using their values of U, and our profile. 
We find that the phase speed is insensitive to  the choice of linear-logarithmic, 
exponential or Kawai’s profile. Differences between values of the phase speed are in 
the order of a few percent. Using a constant profile, either U ,  = 0 or U,  = U,, leads 
to errors of about 20 % a t  u, = 0.136 m/s and 50% a t  u, = 0.6 m/s. 

As Valenzuela uses U, = 0.8u, while Kawai used his measured values, which are 
near U, = 0.5u,, i t  is difficult t o  present illustrations of the foregoing in a figure. I n  
figure 6 we show results for u, = 0136 m/s: apart from Valenzuela’s results all 
theoretical values are based on Kawai’s value for U,. Measurements of Kawai and 
Plant & Wright (1980) are also presented in figure 6. The effect of the value of U, 
depends on wavenumber and u,,. At higher wavenumbers the phase speed becomes 
less sensitive to  U,. For k = 155 m-l the dependence on U, for different friction 
velocities is shown in figure 7. At low friction velocities the influence of U,  on c is 
small. However, at u,, = 0.6 m/s Valenzuela’s value based on U, = 0.8u, is 50% 
larger than our value, obtained by using U, = 0.65u,. If we use U, = 0.5u, in our 
exponential profile we obtain a phase speed 40% lower than that at U, = 0.65u,. 
Using U,  = 0.65u, our phase speeds compare well with the experimental data of Plant 
& Wright (1980), see figure 7. I n  their experiment U,  was not measured: however 
they suggested U, = 0 . 6 ~ ~ .  This analysis shows the importance of U, in comparing 
various theoretical methods and in comparing experimental and theoretical data. 

Next we studied the direct effect of the wind. The wind has no direct effect on c, 
but has on c1 (see (18) and (19)); the real part of c1 is the first-order correction in 6, 
E ,  and eW on the phase speed. Thus the maximum possible direct effect is given by 
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FIQURE 6. Phase velocity as a function of wavenumber at u* = 0.136 m s-l. Theory: - ---, 
Valenzuela (1976); . . . . ., Kawai ( 1 9 7 9 ~ ) ;  -, our study, ( 1 9 ~ ) ;  -..., our study, S = 0;  -.-, 
our study, U ,  = 0. Measurement: x , Kawai (1979~) ;  0, Plant & Wright (1980). 

In  practice (l/c,,) Rec, is even smaller than this. For example, for u* = 0.136 m/s 
and 100 m-l< k < 500 m-l, 

1 
- Rec, < 0.01 (&,at < 0.04), 
C 

while for u* = 0.6 m/s and k = 700 m-l 

1 
- Rec, = 0.16 (a€;! = 0.18), 
C 

1 
- Rec, = 0.30 and for k = 155 m-I 

Incidentally, Re c, is always negative (see figure 7). 
As well as this order analysis we have calculated the effect on the phase speed 

of changes in the shape of the wind profile by varying the thickness of the viscous 
sublayer; we compared r = 5 and r = 8. As is expected from the foregoing, for 
u* < 0.25 m/s the difference is less than 1 yo for all wavenumbers. For u* = 0.6 m/s 
the difference is about 15% of c (+30% of Rec,). 

Summarizing, we can say that the wind-induced current has a large effect on the 
phase velocity ; this can be 50 oh of the phase speed of free waves. The exact shape 
of the profile - linear-logarithmic, exponential or Kawai's - is not of importance, 
though a constant profile leads to errors. However, the value of the current at the 

(&;f = 1.4). 
C 
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surface certainly is of importance, an error in U,, of 25 yo can lead to an error in the 
value of c of 50 %. This suggests that the value of the current and its shear at the 
surface are the two most important features of the current profile. The direct effect 
of the wind on the phase velocity is only noticeable at larger friction velocities: for 
u* = 0.6 m/s it can be 15% of c. 

4. Main conclusions 
It is possible to describe the initial growth of gravity-capillary waves with 

asymptotic methods. Our analysis results in expressions for phase velocity and growth 
rate accurate to order 8 ~ ; ;  and B! respectively for 0.007 < E, < 0.02 and to order 8~2 
and B! respectively for B, 2 0.06, where ea is the inverse of a Reynolds number: 

= u, klu,. For intermediate ca the accuracy is also intermediate. Our analysis 
confirms the validity of Miles’ (1962) expression for the growth rate. 

Growing gravity-capillary waves are very sensitive to their environment. The wind 
speed strongly influences their growth; we find that the growth rate of the initial 
wavelets is proportional to u:. There is no simple scaling law for the growth rate at 
fixed wavenumber but it also depends strongly on u*. Changes in the shape of the 
wind profile, even above the critical height, can change the growth rate by a factor 
of more than three. The influence of the current profile on the growth is within & 20 o/o. 

The phase velocity is more sensitive to the wind-induced current than to the wind 
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itself; the effect of the current can be 50 % of the phase speed while the direct effect 
of the wind is less than 15 yo. A linesr-logarithmic, exponential or error-function-like 
profile all lead to the same results. Good agreement with experimental data can be 
obtained when the value of the current at  the surface is known ; errors in U, of 25 % 
lead to errors in c of up to 50 % . 

Finally we checked that the perturbation normal pressure of the air on the surface 
causes the growth; the effect of the perturbation shear stress is an order pa a smaller. 

This work was partly supported by the Netherlands Organization for the Advance- 
ment of Pure Research (ZWO). We would like to thank G. R. Valenzuela for making 
his original data available to us, Anne de Baas and Wim Verkleij for comments on 
early versions of this paper, and Fred Dobson for an extensive review. 

Appendix 

Here and in the following F has p, q and r as parameters and U,/c as argument when 
these are not specified. 

AU, F q5;wo(o) = 1 +- - 
c F '  

where a prime stands for differentiation with respect to the argument. 

1 
ia, A? = - WoOl&wo- WoC$;wl-- W o D ~ ~ w l + C ( 3 ~ ~ w o - ~ ~ o ) - D ~ ~ w ~ .  (A4)  

The terms - ( Wo/isw) D&,, and -Dq5rwo also appear in (A 4) but these cancel. 

g=- ku$ ' W, +AD,- ~ , c ~ ~ ~ , + Q ~ ~ , A ~ ~ , - ~ ~ , ( A ~ ~ ~ + B ~ ~ ~ ~ .  (A 5 )  

(A 6) 9- = E ,  Bq5ca. 
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- 6  - 1  D = D + -  , D =? (-l+A2D0-&”). 
G w  ew #vw 

C = Co+iswCl, - = O(1). 
CO 

6 1 co=r, c l = c l + ~ , z i l = - D .  
1% 4 v w  18, 

#! 1w1 = K .  

A2 Do #!’ = I+-. 
WO 

$,o=(l+-- AU, F )  ( 1+- A:) +--- h3O0 
c F  wo e * 

1wo 

1 
is, 

fJ5;wl = - $/loo. 
4:: = (at the surface). 

This last expression is a translation of Miles’ result into our notation; Miles did not 
substitute U: = uJe, and in his case Wo = -c/u*. 
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